
2021 IEEE Int. Symp. on Multimedia (ISM). Author’s accepted version. The final publication is available at https://doi.org/10.1109/ISM52913.2021.00045

Combining Global and Local Attention with Positional Encoding
for Video Summarization

Evlampios Apostolidis
CERTH-ITI &

Queen Mary University of London
Thessaloniki, Greece, 57001

Email: apostolid@iti.gr

Georgios Balaouras, Vasileios Mezaris
CERTH-ITI

Thessaloniki, Greece, 57001
Email: {mpalaourg, bmezaris}@iti.gr

Ioannis Patras
Queen Mary University of London

London, UK, E14NS
Email: i.patras@qmul.ac.uk

Abstract—This paper presents a new method for supervised
video summarization. To overcome drawbacks of existing
RNN-based summarization architectures, that relate to the
modeling of long-range frames’ dependencies and the ability
to parallelize the training process, the developed model re-
lies on the use of self-attention mechanisms to estimate the
importance of video frames. Contrary to previous attention-
based summarization approaches that model the frames’ de-
pendencies by observing the entire frame sequence, our method
combines global and local multi-head attention mechanisms to
discover different modelings of the frames’ dependencies at
different levels of granularity. Moreover, the utilized attention
mechanisms integrate a component that encodes the temporal
position of video frames - this is of major importance when
producing a video summary. Experiments on two datasets
(SumMe and TVSum) demonstrate the effectiveness of the
proposed model compared to existing attention-based methods,
and its competitiveness against other state-of-the-art supervised
summarization approaches. An ablation study that focuses on
our main proposed components, namely the use of global and
local multi-head attention mechanisms in collaboration with an
absolute positional encoding component, shows their relative
contributions to the overall summarization performance.

Keywords-video summarization; self-attention; multi-head
attention; positional encoding; supervised learning

I. INTRODUCTION

Recent advances in content generation and sharing tech-
nologies resulted in video being the most commonly-
preferred medium for communication, or to present an event.
Humans are more and more engaged with devices integrating
video recording and online sharing functionalities (such as
smartphones, tablets and wearable cameras). At the same
time, social networks (such as Facebook, Instagram, Twitter,
TikTok) and video sharing platforms (such as YouTube,
Vimeo, Dailymotion) are widely-used as communication
means of both amateur and professional users. This tech-
nological environment stimulated a tremendous growth of
videos over the Web and highlighted the need for technolo-
gies that allow users’ navigation within endless collections
of videos and quick retrieval of the video content that they
are looking for. The answer to this demand comes not only
from video retrieval technologies but also from technologies

for automatic video summarization. The latter allow gener-
ating a concise synopsis that conveys the important parts
of the full-length video; based on this, viewers can have a
quick overview of the whole story without having to watch
the entire content.

Several approaches have been proposed to automate video
summarization, and methods that are based on deep network
architectures represent the current state of the art in the
field. A recent study of the literature [1] shows that most
approaches utilize RNNs to model the temporal dependence
among video frames and learn how to estimate the frames’
importance (e.g., [2]–[15]). However, the use of RNNs and
their variations (mostly LSTMs [16] and GRUs [17]) for
video summarization shows some weaknesses; these relate
to the long paths that forward and backward signals have
to traverse in the network, which negatively affect the
network’s ability to model long-range dependencies, and
to the limited amount of parallelizable operations during
training, as discussed in [5], [18]–[20].

To overcome the aforementioned drawbacks, some works
[19], [21] follow a completely different approach. Instead
of using RNNs, they model the frames’ dependencies us-
ing learnable self-attention mechanisms. Nevertheless, these
mechanisms i) focus only on the pair-wise similarity of video
frames, and ii) are applied to the entire frame sequence. The
former observation highlights that the existing self-attention-
based summarization approaches ignore the temporal order
of the video frames, that is of major importance when
creating the video summary. The latter observation points
out the risk of performance degradation in the case of long
videos, since, as discussed in [19], frames from temporally
distant scenes are likely less relevant than the local ones,
but the global attention still needs to explore them. This
increases the variance of attention values, which negatively
impacts the accuracy of the frames’ importance estimation.

To tackle the above discussed limitations of the existing
self-attention-based summarization methods, we propose a
novel supervised approach, called PGL-SUM, which inte-
grates an absolute positional encoding component into a
pair of multi-head self-attention mechanisms that model the
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frames’ dependencies at different granularities. Based on the
used attention mechanisms the developed network architec-
ture is able to learn how to identify the most important parts
of the video both by considering the entire frame sequence
and by focusing on smaller parts of it. Building on this
knowledge and having integrated a component to model the
temporal order of the video frames, the proposed PGL-SUM
model is capable of creating concise and temporally coherent
video summaries. Our contributions are the following:

• We introduce the use of absolute positional encoding
as part of the self-attention mechanism to address the
task of video summarization;

• We propose a new architecture that embeds an absolute
positional encoding component into global and local
multi-head attention mechanisms to learn a better mod-
eling of frames’ dependencies from human annotations.

II. RELATED WORK

Various approaches have been introduced to automate
video summarization, and the current state of the art is
represented by methods utilizing deep network architectures.
For the sake of space, in this section we present in brief the
relevant literature on supervised video summarization, fo-
cusing mostly on approaches utilizing attention mechanisms
that are most closely related to the proposed method. For
a more complete study of the literature on deep learning
and on more conventional approaches, interested readers can
refer to [1] and [22], respectively.

One of the first approaches for video summarization was
to model the variable-range temporal dependence among
frames and learn how to estimate their importance according
to ground-truth annotations. For this, some methods utilize
structures of RNNs [2]–[5], or Fully Convolutional Sequence
Networks [23]. Other works try to tackle issues related to
the limited capacity of RNNs and use additional memory
either in the form of external storage [9] or by stacking mul-
tiple LSTM and memory layers hierarchically [10]. Some
algorithms aim to model the evolution of the users’ interest
by introducing tailored attention mechanisms in classic [6]
or sequence-to-sequence [7], [8] RNN-based architectures.
Lebron Casas et al. [6] extend the architecture from [2], by
embedding an LSTM-based attention layer to either model
the frames’ temporal dependence and make estimates about
their importance, or to form new frame representations for
learning how to produce a diverse video summary. Ji et
al. [7] formulate video summarization as a sequence-to-
sequence learning problem and integrate an attention layer
into an LSTM-based encoder-decoder network. This layer
gets the encoder’s output and the previous hidden state of
the decoder and computes a vector with attention values,
which subsequently affects the video decoding process. In
their following work, Ji et al. [8] introduce an extension of
the model from [7], which integrates a semantic preserving
embedding network that evaluates the decoder’s output with

respect to the preservation of the video’s semantics using a
tailored semantic preserving loss.

Going one step further, a few video summarization meth-
ods learn the frames’/fragments’ importance by modeling
the spatiotemporal structure of the video. For this, a couple
of works use convolutional LSTMs in combination with
typical CNN-based deep representations [11], or extract
more advanced representations with the help of trainable
3D-CNNs [12]. Another approach [24], extracts spatial and
temporal information by processing the raw frames and their
optical flow maps with CNNs, and learns frames’ importance
based on a label distribution learning process. Following a
different strategy, the method in [13] combines CNNs and
GRUs to form spatiotemporal feature vectors that are then
used to estimate the level of activity and importance of each
frame. Finally, Huang et al. [25] train a neural network
for spatiotemporal data extraction and use the extracted
information to create a motion curve and identify the video
shots. Then, based on human annotations, a self-attention
model learns how to estimate the intra-shot importance and
select the key-frames/fragments of the video to form a
static/dynamic video summary.

Adopting a different strategy to minimizing the dis-
tance between the machine-generated and the ground-truth
summary, a couple of methods use Generative Adversarial
Networks [14], [15]. Their goal is to train a summarizer in
order to fool a trainable discriminator when distinguishing
the machine- from the user-generated summary.

Last but not least, a few approaches aim to model the
frames’ dependencies using variants of the self-attention
mechanism of the Transformer Network [18]. The first
approach to this direction [19], combines a soft self-attention
mechanism with a two-layer fully connected network for
regression of the frames’ importance scores. Liu et al. [21]
describe a hierarchical approach which initially defines a
set of shot-level candidate key-frames, and then it employs
a multi-head attention model to further assess candidates’
importance and select the key-frames that form the summary.
Li et al. [20] extend the training pipeline of the typical self-
attention mechanism, by introducing a processing step that
uses the computed attention values and tries to increase the
diversity of the visual content of the summary. The estimated
attention values (after incorporating information about the
frames’ diversity) are used to estimate frames’ importance
and learn summarization from human annotations. Ghauri et
al. [26] propose a variation of the architecture from [19], that
uses additional representations of the video content. Besides
the typical CNN-based features (obtained from pool5 layer
of GoogleNet [27] trained on ImageNet), Ghauri et al.
use a model of the Inflated 3D ConvNet [28] trained on
Kinetics, to extract a set of motion-related features. Each
different set of features is fed to a self-attention mechanism
and the outputs of these mechanisms are fused to form a
common embedding space for representing the video frames.
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Figure 1. The PGL-SUM network architecture. Shaded boxes indicate non-trainable parts.

The obtained representation is finally used to learn how to
estimate frames’ importance.

The proposed approach is most closely related to the
methods of the previous paragraph that rely on self-attention
mechanisms. Nevertheless, contrary to all these methods
that model the frames’ dependencies after taking under
consideration the entire frame sequence, the developed PGL-
SUM model captures the frames’ dependence at different
granularities with the help of global and local multi-head
attention mechanisms. Moreover, in contrast to these meth-
ods that completely ignore the sequential nature of the video,
our approach enhances each utilized attention mechanism by
embedding a component that encodes the temporal position
of frames, a type of information that is crucial when estimat-
ing the frames’ importance. The aforementioned differences
target relevant limitations of existing self-attention-based ap-
proaches and lead to advanced summarization performance,
as reported in Section IV.

III. PROPOSED APPROACH

The starting point of our work was the supervised method
of Fajtl et al. [19]. The core part of this method is a soft self-
attention mechanism that takes the entire frame sequence and
models the frames’ dependencies based on their pair-wise
similarities. The output of this mechanism is then forwarded
to a two-layer fully connected network that produces esti-
mates about each frame’s importance. These estimates are
eventually compared to ground-truth annotations about the
frames’ importance, thus allowing the network architecture

to learn summarization in a supervised manner. This method
has two main weaknesses that relate to: i) the complete
lack of knowledge about the temporal position of the video
frames (which is crucial when producing a temporally-
coherent summary of the video content), and ii) the growing
difficulty to accurately estimate the frames’ importance as
the video duration increases.

To overcome these weaknesses we built a new architecture
that extends [19] by: i) utilizing a multi-head attention mech-
anism for modeling the frames’ dependencies according to
the entire frame sequence, ii) introducing multiple multi-
head attention mechanisms that model short-term dependen-
cies via focusing on smaller parts of the video, and iii)
enhancing these attention mechanisms with a component
that encodes the temporal position of the video frames. In
the sequel, we present the developed network architecture
(Fig. 1) by describing the processing pipeline from video
representation to frames’ importance estimation, which is
the same during both training and inference. Regarding our
notation: capital bold letters denote matrices, small bold
letters denote vectors and non-bold letters (either capital or
small) denote scalars.

Given a video of T frames, the proposed PGL-SUM
model initially produces a set of deep feature representations
(X = {xt}Tt=1) of size D (xt = {xt,i}Di=1) using a
pretrained CNN model. These representations form the input
to the trainable part of the architecture and follow two
different processing paths. One of these paths includes a
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Figure 2. The utilized multi-head attention mechanism.

global multi-head attention mechanism that aims to discover
different modelings of the frames’ dependencies according
to the entire frame sequence. The used multi-head attention
mechanism (Fig. 2), which is the same with the one in
the Transformer Network [18], gets as input the set of
feature vectors (X = {xt}Tt=1) and forms the Query (Q =
{qt}Tt=1), Key (K = {kt}Tt=1) and Value (V = {vt}Tt=1)
matrices of the training process. In the simplest case of
single-head attention, these matrices are fed to a triplet of
linear layers and the produced embeddings (Q′ = {q′

t}Tt=1,
K′ = {k′

t}Tt=1 and V ′ = {v′
t}Tt=1 respectively), that

maintain the dimensions of Q, K, V , are given as input
to the dot-product attention process, which produces the
attention values for the video frames (A = {at}Tt=1). In
the case of multi-head attention the different heads, that are
denoted by the existence of a set of H different linear layers
associated to H dot-product attention processes, produce
different embeddings for the Query, Key and Value matrices
(Q′

j , K′
j , V ′

j , with j ∈ [1, H]) in which the dimension
of each representation is reduced to D/H . Each triplet
of these embeddings (for simplicity, in Fig. 2 we depict
the output of only the first triplet of linear layers) is then
forwarded to a different dot-product attention process that
computes a set of attention values. The computed sets of
attention values for the different triplets of embeddings
(Aj = {aj

t}Tt=1, with j ∈ [1, H]) are then concatenated.
The output of this process (A = {at}Tt=1) is fed to a

Figure 3. The applied dot-product attention that integrates knowledge
about the temporal position of the video frames.

linear layer that forms the final outcome of the global
multi-head attention mechanism (ZG = {zG

t }Tt=1). This
new representation captures information about each frame’s
importance according to the entire frame sequence.

Regarding the dot-product attention (Fig. 3), we enhance
this process by incorporating knowledge about each frame’s
position in the frame sequence. For this, we use a component
that encodes the absolute position of the frames using sine
and cosine functions of different frequencies:

PE(pos,2i) = sin(pos/100002i/D)

PE(pos,2i+1) = cos(pos/100002i/D)
(1)

where pos is the position and i is the index of each frame
in the frame sequence. This encoding is similar to the one
used in [18]. However, given an item of the frame sequence,
we do not apply this encoding over the elements of its
representation vector (as in [18]), but over the elements
of the sequence. So, given the video of T frames that
are represented by D-sized feature vectors, we compute a
positional encoding matrix of size T ×T (and not T ×D as
in [18]). The encoded information of this T × T matrix is
incorporated into the dot-product attention by being added
to the output of a matrix multiplication that involves the
Query and the (transposed) Key matrices. A similar idea
was described in [29], to model the relative position of
the elements of a sentence for addressing the machine
translation task. However, this work adopts a threshold about
the maximum relative position between the elements of a
sequence, that could be quite restrictive in the case of videos.
Hence, we prefer to use a component that encodes the
absolute position of the video frames. Finally, we avoid the
scaling part of the original dot-product attention approach
[18], as in our case experiments showed that it negatively
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affects the method’s performance.
The other processing path includes a segmentation step

that splits the originally extracted set of deep feature vectors
for the video frames (X = {xt}Tt=1) into M consec-
utive and non-overlapping segments. Each one of these
segments (Zi, with i ∈ [1,M ]) contains the deep feature
vectors of the video frames that lie within the segment
(Zi = {zt}

i T
M

t=(i−1) T
M +1

). Each set of feature vectors is
then forwarded to a different local multi-head attention
mechanism that focuses on the corresponding part of the
video. Based on the analysis pipeline described for the
case of the global multi-head attention mechanism, each
local attention mechanism produces a new representation
of the feature vectors of the frames that lie within the
associated segment of the video (ZL

i , with i ∈ [1,M ]

and ZL
i = {zL

t }
i T
M

t=(i−1) T
M +1

), that encodes data about the
importance of each video frame according to its dependence
to the frames within the same segment. The only difference
in this processing path is that the produced embeddings
by the different heads of each local attention mechanism
(Q′

j , K′
j , V ′

j , with j ∈ [1, H]) are formed through an
additional dimensionality reduction step that relates to the
number of video segments and results in representations of
dimension equal to D/(H ·M). The reason for applying such
an additional dimensionality reduction in the case of multi-
head local attention mechanisms is to maintain a low level of
computational complexity, and it was based on the intuition
that smaller representations would be sufficient for modeling
dependencies over shorter sequences of video frames. This
intuition was experimentally validated after evaluating the
performance of a variation of the proposed model that does
not perform the additional dimensionality reduction step.

Having available the generated representations from the
global (ZG) and the multiple local multi-head attention
mechanisms (ZL

i , with i ∈ [1,M ]), the next step is to
perform feature addition (represented by the ⊕ symbol at
the left in Fig. 1) and produce a new representation for each
video frame, that carries information about each frame’s
importance according to its global and local dependencies
(Z′ = {z′

t}Tt=1). The resulting set of representations is then
added to the original deep representations (X = {xt}Tt=1)
via a residual skip connection that aims to facilitate back-
propagation (this addition is represented by the ⊕ symbol
at the right in Fig. 1). The output of this operation (W =
{wt}Tt=1) is forwarded to a dropout layer that is followed
by a normalization layer. The resulting representation is
given as input to the Regressor Network, which is the same
with the one in [19]. Finally, the Regressor produces a
set of frame-level scores (y = {yt}Tt=1 with yt ∈ R and
0 ≤ yt ≤ 1) that indicate the frames’ importance.

Given the output of the aforementioned processing
pipeline, at training time, we compute the Mean Squared
Error between this output and the ground-truth annotations

(both represent frame-level importance scores). The com-
puted training loss is then back-propagated to compute the
gradients and update all the different trainable parts of the
architecture. At inference time, the estimated importance
scores are used to select the key-fragments of the video and
form the video summary. For this, given a temporal segmen-
tation of the video into its building blocks (obtained e.g.,
using the KTS algorithm [30]) fragment-level importance
is calculated by averaging the scores of each fragment’s
frames. Finally, provided that the summary does not exceed
15% of the video duration (which is a common setting in the
relevant literature), we form the video summary by solving
the Knapsack problem, similarly to [2], [6]–[9], [11], [13],
[14], [19], [20], [23], [24].

IV. EXPERIMENTS

A. Datasets and Evaluation Approach

Datasets. To evaluate the performance of our PGL-SUM
model we use two benchmarking datasets. The SumMe
dataset [31] contains 25 videos (1-6 min. duration) covering
multiple events from both first-person and third-person view.
Each video is associated to multiple (15-18) annotations
in the form of key-fragments. Moreover, a single ground-
truth summary in the form of frame-level importance scores
(calculated by averaging the key-fragment user summaries
per frame) is also provided for each video, to support
supervised training. TVSum is composed of 50 videos (1-
11 min. duration) from 10 categories of the TRECVid
MED dataset. Each video is annotated by 20 users in the
form of frame-level importance scores, and a single ground-
truth summary (computed by averaging all users’ scores) is
available as well.

Evaluation Approach. For fair comparison with the
majority of state-of-the-art approaches, we adopt the key-
fragment-based evaluation protocol proposed in [2]. The
similarity between a machine-generated and a user-defined
summary is estimated by computing their overlap using the
F-Score (as percentage). So, given a video, we compare
the generated summary with the user summaries for this
video, and compute an F-Score for each pair of compared
summaries. Then, we average the computed F-Scores (for
TVSum) or keep the maximum of them (for SumMe) and
end up with the final F-Score for this video. The computed
F-Scores for the entire set of test videos are averaged to
form the final outcome about the method’s performance.
This protocol is directly applicable on SumMe, as user
annotations are in the form of key-fragments. For TVSum,
frame-level annotations are converted to key-fragment anno-
tations, following [2], [32]. Finally, we follow the established
approach (e.g., [7], [8], [19]) of using 80% of the videos of
each dataset for training and the remaining 20% for testing.
We run experiments on five different randomly-created splits
for each dataset, and in the following we report the average
performance over these runs.
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Figure 4. From left to right, the average (over the test sets of the five utilized splits) learning curve and the training loss curve (for one of the used splits)
of the proposed method on SumMe and TVSum.

B. Implementation Details

As in most state-of-the-art methods, videos are downsam-
pled to 2 fps. Deep representations of frames are obtained
by taking the output of the pool5 layer of GoogleNet [27]
trained on ImageNet, and thus are of size D = 1024. The
number of video segments M , which also determines the
amount of local attention mechanisms, equals to 4. The
number of the utilized attention heads H is set to 8 and 4
for the global and local attention mechanisms, respectively.
Wherever applied, data fusion is based on addition. The
learning rate, dropout rate and L2 regularization factor are
equal to 5 · 10−5, 0.5 and 10−5, respectively. For the
network’s weights initialization, we use the Xavier uniform
initialization approach with gain =

√
2 and biases = 0.1.

Training is performed in a full-batch mode (i.e., batch
size is equal to the number of samples) using the Adam
optimizer, and stops after 200 epochs. The aforementioned
configuration of the different hyper-parameters and data
fusion components of the architecture is made based on
the outcomes of the conducted sensitivity analysis that is
reported in Section IV-C.

For selecting a well-trained model after the end of the
training, we designed a model selection criterion based on
the obtained loss curves. The right part of Fig. 4 shows
that the training loss is smoothly decreasing for the TVSum
data, resulting on a nice convergence in the average (over
the test sets of the five used splits) learning curve (left
part of Fig. 4). On the other hand, the training loss for the
smaller SumMe dataset indicates a more sensitive learning,
susceptible to network’s initialization and update over the
training epochs, which can also be affected by the employed
hardware. According to these remarks, the designed criterion
focuses on areas of the loss curve that are placed right
before rapid changes in the loss value. If such changes are
not observed, then the criterion selects a model based on
the minimization of the loss value. So, in the case of the
SumMe dataset the adopted criterion selects a model after
approx. 120 training epochs, thus making a choice that is

aligned with the observed performance peak for this dataset
in the left part of Fig. 4. In the case of the TVSum dataset,
the criterion focuses at the end of the training process, thus
selecting a model from one of the last training epochs that,
according to the TVSum-related curve on the left part of Fig.
4, appear to have the highest summarization performance.

All experiments were carried out on a PC with an NVIDIA
TITAN Xp GPU. To promote reproducibility of our report-
ings, the PyTorch implementation of PGL-SUM is publicly-
available at: https://github.com/e-apostolidis/PGL-SUM.

C. Sensitivity Analysis
We start our experimentation by assessing the sensitiv-

ity of the proposed PGL-SUM model with respect to the
main hyper-parameters of the network architecture and the
different strategies for data fusion. Our plan is to estimate
the maximum learning capacity of the network for each
one of the different examined configurations. So, as the
use of a model selection criterion can impact the evaluation
outcome, in this set of experiments we do not consider such
a criterion and the summarization performance is formed
by averaging the maximum performance of each considered
network configuration on the used data splits. The outcomes
of this sensitivity analysis will allow to make decisions about
the optimal values for the considered hyper-parameters and
to select the best data fusion approach.

Our first experiment aims to investigate the optimal
choices about the number of video segments (which deter-
mines the amount of the utilized local attention mechanisms
as well) and the applied strategy for fusing the generated rep-
resentations by the global and local attention mechanisms of
the architecture. The considered cases and the outcomes of
this experiment are presented in Table I. The reported values
indicate the use of four video segments in combination with
an addition-based data fusion approach, as the best option
for both datasets.

Following, we examine different choices about the amount
of attention heads for the global and local attention mech-
anisms of the architecture. The results in Table II show

6

https://doi.org/10.1109/ISM52913.2021.00045
https://github.com/e-apostolidis/PGL-SUM


2021 IEEE Int. Symp. on Multimedia (ISM). Author’s accepted version. The final publication is available at https://doi.org/10.1109/ISM52913.2021.00045

Table I
THE PERFORMANCE (F-SCORE (%)) OF DIFFERENT CONFIGURATIONS

OF OUR NETWORK ARCHITECTURE ON SUMME AND TVSUM, THAT
RELATE TO DIFFERENT DESIGN CHOICES REGARDING THE NUMBER
OF VIDEO SEGMENTS AND THE APPLIED DATA FUSION STRATEGY.

SumMe TVSum

Fusion
Segments 2 4 8 2 4 8

Addition 49.8 55.6 51.9 61.1 61.7 59.5
Average pooling 51.5 54.1 52.5 61.1 59.7 58.7

Max pooling 51.1 53.9 52.2 61.3 59.6 58.5
Multiplication 46.3 52.1 52.5 47.3 47.6 46.9

Table II
THE PERFORMANCE (F-SCORE (%)) OF DIFFERENT CONFIGURATIONS

OF OUR NETWORK ARCHITECTURE ON SUMME AND TVSUM, THAT
RELATE TO DIFFERENT OPTIONS ABOUT THE NUMBER OF HEADS FOR

THE GLOBAL AND LOCAL ATTENTION MECHANISMS OF THE
NETWORK.

SumMe TVSum

Global
Local 2 4 8 2 4 8

2 52.4 52.4 52.8 61.4 61.6 61.4
4 54.9 58.5 49.2 60.9 61.3 60.4
8 55.8 58.8 57.1 60.3 61.1 60.9
16 56.7 57.7 54.9 61.3 60.9 60.1

that the use of 4-head local attention mechanisms is a good
choice for both datasets. Concerning global attention, a large
number of heads (equal to eight) favors the summarization
performance on SumMe, while a smaller number of heads
(equal to two) leads to the best performance on TVSum. To
avoid dataset-tailored configurations of the network architec-
ture, we decide to use an 8-head global attention mechanism
in combination with the four 4-head local attention mecha-
nisms, as this setting leads to consistently good performance
on both datasets.

D. Performance Comparisons

Building on the outcomes of the conducted sensitivity
analysis, the best configuration of the PGL-SUM network ar-
chitecture is subsequently compared with a set of supervised
video summarization approaches from the bibliography. Our
first set of comparisons is based on the experimental eval-
uation of two attention-based approaches of the literature
with publicly-available implementations, that are among the
most closely-related ones to our method. In particular, our
method is compared with the VASNet method from [19]
and the MSVA method from [26], after evaluating all three
methods under the exact same experimental conditions; i.e.,
using the same data splits, adopting the same batch size
for training (that equals to one, according to the publicly-
available implementations of the VASNet and MSVA meth-
ods), and applying the same evaluation approach that takes
the average of the maximum values recorded for the videos

Table III
COMPARISON WITH DIFFERENT SUPERVISED ATTENTION-BASED

SUMMARIZATION APPROACHES WITH PUBLICLY-AVAILABLE
IMPLEMENTATIONS, ON SUMME AND TVSUM. F1 DENOTES F-SCORE
(%) AND RNK DENOTES THE RANKING OF THE COMPARED METHODS.

SumMe TVSum Avg
Rnk

Data
splitsF1 Rnk F1 Rnk

VASNet [19] 50.0 3 62.5 2 2.5 5 Rand
MSVA [26] 54.0 2 62.4 3 2.5 5 Rand
PGL-SUM (Ours) 57.1 1 62.7 1 1 5 Rand

of the test set of each utilized data split. The results of this
experiment, presented in Table III, show that our method
significantly outperforms the other two approaches on the
SumMe dataset, while being also slightly better on the
TVSum dataset. Moreover, the comparison of our method
with VASNet - which was the basis for our developments -
indicates the positive impact of the introduced extensions to
the network architecture of VASNet.

Following, the proposed method is compared with a
random summarizer and several state-of-the-art supervised
video summarization approaches. In this case, our PGL-
SUM network architecture is trained in a full-batch mode,
and a well-trained model is selected using the criterion
described in Section IV-B. Hence, somewhat lower perfor-
mance than the one reported in Table III can be recorded.
The performance of a random summarizer on a given video
is measured by: i) randomly assigning importance scores
to the video frames based on a uniform distribution of
probabilities, ii) computing fragment-level scores based on
a predefined KTS-based segmentation of the video, iii)
using the Knapsack algorithm to form a summary with
a length that does not exceed 15% of video duration.
Random summarization is performed 100 times and we
report the average score. The performance of each compared
supervised method is from the corresponding paper, as the
source code for implementing and evaluating these methods
on the used data splits is not publicly-available. The reported
values in Table IV show that the proposed approach is the
best-performing one compared to other existing attention-
based summarization approaches (marked with * in Table
IV). Moreover, our method is the second-best among a large
set of state-of-the-art supervised summarization methods,
performing consistently well in both datasets. Contrarily, the
top-performing method on TVSum (MAVS [9]) shows ran-
dom performance on SumMe. The best-performing method
on SumMe (SMN [10]) exhibits very good performance
on TVSum as well (being the second-best on this dataset).
However, according to [10], this method has been evaluated
using only one randomly-created split of the used data. As
discussed in [33], these random data splits show signifi-
cantly varying levels of difficulty that affect the evaluation
outcomes. To alleviate this effect to some extent, most
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Table IV
COMPARISON WITH SUPERVISED VIDEO SUMMARIZATION

APPROACHES ON SUMME AND TVSUM. APPROACHES THAT
INTEGRATE ATTENTION MECHANISMS ARE MARKED WITH *. F1

DENOTES F-SCORE (%) AND RNK DENOTES THE RANKING OF THE
COMPARED METHODS.

SumMe TVSum Avg
Rnk

Data
splitsF1 Rnk F1 Rnk

Random Summary 40.2 19 54.4 16 17.5 -
vsLSTM [2] 37.6 22 54.2 17 19.5 1 Rand
dppLSTM [2] 38.6 21 54.7 15 18 1 Rand
ActionRanking [13] 40.1 20 56.3 14 17 1 Rand
*vsLSTM+Att [6] 43.2 16 - - 16 1 Rand
*dppLSTM+Att [6] 43.8 15 - - 15 1 Rand
H-RNN [3] 42.1 17 57.9 12 14.5 -
*A-AVS [7] 43.9 14 59.4 8 11 5 Rand
*SF-CVS [25] 46.0 9 58.0 11 10 -
SUM-FCN [23] 47.5 7 56.8 13 10 M Rand
HSA-RNN [4] 44.1 13 59.8 7 10 -
CRSum [12] 47.3 8 58.0 11 9.5 5 FCV
MAVS [9] 40.3 18 66.8 1 9.5 5 FCV
TTH-RNN [5] 44.3 12 60.2 6 9 -
*M-AVS [7] 44.4 11 61.0 4 7.5 5 Rand
SUM-DeepLab [23] 48.8 5 58.4 10 7.5 M Rand
*DASP [8] 45.5 10 63.6 3 6.5 5 Rand
*SUM-GDA [20] 52.8 3 58.9 9 6 5 FCV
SMLD [24] 47.6 6 61.0 4 5 5 FCV
*H-MAN [21] 51.8 4 60.4 5 4.5 5 FCV
SMN [10] 58.3 1 64.5 2 1.5 1 Rand
PGL-SUM (Ours) 55.6 2 61.0 4 3 5 Rand

works use more than one splits in their evaluations (see the
rightmost column of Table IV). Moreover, the SMN model
[10] relies on the use of LSTMs, and thus its training can
not be made in a fully-parallel way. Despite the fact that
our PGL-SUM model has 3 times more learnable parameters
than the SMN model, comparisons with a baseline variation
of this model (called “Stack-LSTM” in [10]) that contains
less parameters than SMN, showed that our model is trained
2.5 and 6 times faster on SumMe and TVSum, respectively.

E. Ablation Study

To evaluate the contribution of each of the core com-
ponents of our model, we conduct an ablation study that
includes the following variants of the proposed architecture:

• PGL-SUM w/o global attention. This variant leaves
out the global attention mechanism and uses only local
attention to model the frames’ dependencies.

• PGL-SUM w/o local attention. This variant does not
contain any local attention mechanism and the model-
ing of frames’ dependencies relies on global attention.

• PGL-SUM w/o positional encoding. This variant
excludes the absolute positional encoding component
that is originally used when computing the dot-product
attention.

We run this experiment on the same group of five
randomly-created data splits and report the average perfor-
mance. The results in Table V show that the combination of

Table V
ABLATION STUDY BASED ON THE PERFORMANCE (F-SCORE (%)) OF

THREE VARIANTS OF THE PROPOSED MODEL, ON SUMME AND
TVSUM.

SumMe TVSum
PGL-SUM w/o global attention 46.9 52.4
PGL-SUM w/o local attention 46.7 59.9
PGL-SUM w/o positional encoding 53.1 61.0
PGL-SUM (Proposed) 55.6 61.0

global and local attention mechanisms is a good approach
for modeling frames’ dependencies, as the removal of one of
these mechanisms (and especially of the global one) severely
affects the summarization performance on at least one of
the used datasets. Moreover, the positional encoding com-
ponent is also shown to have a positive impact, as it leads
to improved performance on SumMe, while allowing the
network to maintain the same high levels of summarization
performance on TVSum.

V. CONCLUSION

In this work, we proposed a new network architecture
for supervised video summarization, that aims to overcome
limitations of existing approaches with respect to: i) the
modeling of long-range frames’ dependencies, ii) the par-
allelization ability of the training process (two drawbacks
of existing RNN-based methods), and iii) the granularity
level at which the temporal dependencies between frames
are modeled (a weakness of existing self-attention-based
methods). The developed PGL-SUM model uses a number of
multi-head attention mechanisms that integrate a component
for encoding the temporal position of the video frames. One
of these mechanisms aims to model the temporal dependence
of frames according to the entire frame sequence, while the
remaining ones try to discover modelings of such temporal
dependencies by focusing on smaller parts of the video.
An ablation study documented the positive contribution of
our proposals, namely the use of global and local multi-
head attention mechanisms in combination with an absolute
positional encoding component. Experiments on two bench-
marking datasets (SumMe and TVSum) showed that our
PGL-SUM model is the best-performing one compared to
existing methods that rely on self-attention mechanisms, and
demonstrated its competitiveness against other state-of-the-
art supervised summarization approaches.
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